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ABSTRACT

Severe weather events can have a significant impact on local communities because of the loss of life and

property. Forecast busts associated with high-impact weather events have been attributed to initial condition

errors over data-sparse regions, such as the Pacific Ocean. Numerous flight campaigns have found that tar-

geted observations over these areas can improve forecasts. To better understand the impacts of measurement

type and sampling domains on forecast performance, observing system simulation experiments are performed

using the National Centers for Environmental Prediction Global Forecast System (GFS) with hybrid

3DEnVar data assimilation and the ECMWF T511 nature run. First, three types of simulated perfect drop-

sonde observations (temperature, specific humidity, and wind) are assimilated into the GFS over a large

idealized sampling domain covering the Pacific Ocean. For the three winter storms studied, forecast error was

found to be significantly reduced with all three types of measurements providing the most benefit (;5%–15%

reduction in error). Instances when forecasts are not improved are investigated and concluded to be due to

challenging meteorological structures, such as cutoff lows and interactions with atmospheric structures out-

side the sampling domain. Second, simulated dropsondes are assimilated over sensitive areas and flight tracks

established using the ensemble transform sensitivity (ETS) technique. For all three winter storms, forecast

error is reduced up to 5%, which is less than that found using an idealized domain. These results suggest that

targeted observations over the PacificOceanmay provide a small improvement to winter storm forecasts over

the United States.

1. Introduction

Extratropical cyclones that originate over the Pacific

Ocean can impact the West Coast of the United States

with high winds and heavy precipitation and can result in

the loss of life or property. Even with advances in nu-

merical weather prediction (NWP), large errors in short-

term forecasts of strong North Pacific cyclones still occur

(McMurdie and Mass 2004; McMurdie and Casola 2009;

Rodwell et al. 2013). For example, McMurdie and Mass

(2004) observed large short-term forecast errors in position

and central pressure ofmidlatitude cyclones along thewest

coast of North America and offshore. Subsequent studies

a Current affiliation: Panasonic Weather Solutions, Morrisville,

North Carolina.

Corresponding author: Tanya Peevey, tanya.peevey@noaa.gov

MAY 2018 PEEVEY ET AL . 1341

DOI: 10.1175/MWR-D-17-0160.1

� 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

mailto:tanya.peevey@noaa.gov
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


have shown that short-term forecast errors are larger along

the west coast of North America than the east coast

(Wedam et al. 2009), and central pressure displacement

errors for cyclones are large (greater than;10 hPa on day

2) over the central and eastern Pacific for the Global

Forecast System (GFS; Charles and Colle 2009; Colle and

Charles 2011).

Errors in short-term forecasts have been partially at-

tributed to initial condition errors that occur over the data-

sparse region of the Pacific Ocean (Langland et al. 1999b,

2002) or are tied to flow-dependent model error growth

(McMurdie and Mass 2004; Kleist and Morgan 2005).

These initial condition errors have been shown to not only

affect local forecast accuracy, but also to spread eastward

from the Pacific Ocean and impact the eastern United

States (see McMurdie and Casola 2009; Colle and Charles

2011, and references therein). Some of the current un-

derstanding of initial condition errors was obtained

through field campaigns, such as the Winter Storm Re-

connaissance (WSR) that started in 1999 and ran for 101
years. Research results fromWSR campaigns have shown

that forecasts improve due to data enhancing the analysis

over the eastern Pacific Ocean (Toth et al. 2000; Szunyogh

et al. 2000). Other studies have shown that certain flow

regimes over theUnited States can influence predictability

and forecasts in Europe and suggest that it is important to

improve the quality and use of observational data in re-

gions that are ill-constrained (Rodwell et al. 2013).

Part of the effort to reduce the impact of model initial

condition errors on the forecast performance of high-

impact weather events has occurred through a variety of

field campaigns using the concept of ‘‘targeted obser-

vations.’’ The goal of a targeted observation effort is to

reduce the analysis errors in the model by targeting re-

gions that have the potential for large error growth,

thus curtailing the growth of these initial errors and re-

ducing the subsequent forecast error (Toth et al. 2002;

Majumdar 2016). The various methods used for finding

these target regions are called adaptive observation

strategies, such as the ensemble transform (ET; Bishop

and Toth 1999; Szunyogh et al. 1999), ensemble trans-

form sensitivity (ETS; Zhang et al. 2016), and adjoint-

based techniques (Palmer et al. 1998; Langland et al.

1999a). One study comparing targeting techniques

found that forecasts improved regardless of the tech-

nique utilized (Aberson et al. 2011), while another study

found differences in identified target areas when the

forecast metrics were similar (Huang and Meng 2014).

These results suggest that targeting techniques are

sometimes unreliable. Additionally, other studies have

shown that targeted observation methods are more effec-

tive at increasing forecast skill than random observations

(Morss et al. 2001; Buizza et al. 2007) and result in overall

positive results, even though there are null cases or de-

graded forecasts (Szunyogh et al. 1999).

Both observing system simulation experiments

(OSSEs) and observing system experiments (OSEs)

have been used with targeted observation techniques to

evaluate the impact of observations on forecast skill.

Early OSE data impact studies focused on extratropical

storms have shown, using a variety of targeting tech-

niques, that the assimilation of targeted observa-

tions reduces forecast error on average for short-term

(0–60h) forecasts (Langland et al. 1999a,b; Szunyogh

et al. 2000). A more recent study found neutral to

negative results when investigating the data impact of

the 2011 Winter Storm Reconnaissance program

(WSR2011) on forecast skill in the European Centre for

Medium-Range Weather Forecasts (ECMWF) four-

dimensional variational (4D-Var) data assimilation

(DA) system (Hamill et al. 2013). The authors suggested

that results were due to improvements in the forecast

and DA system and an increase in the number of ob-

servations over the past decade. However, another study

found results to be sensitive to the meteorological situ-

ation and season, and it was suggested that a 4D-Var

system would better exploit localized targeted obser-

vations and thus result in greater benefits (Cardinali

et al. 2007). Recent reviews of the impact of targeted

observations on the forecast skill of polar, extratropical,

and tropical cyclones have found the following: neutral

results for polar cyclones (Irvine et al. 2009, 2011), small

but positive average impact for short-term forecasts of

extratropical and tropical cyclones [see Majumdar

(2016) and references therein], and a 10%–15% im-

provement in hurricane track forecasts at the 0–5-day

lead time (Aberson 2010) with occasional degradations

(Aberson 2008).

OSSEs were first suggested by Newton (1954) as a

method for evaluating the impact of future observing

systems on numerical forecasts using fictitious observa-

tions. They are a cost-effective method to evaluate the

potential value of an observing system before it is de-

ployed. Over the last fewdecades, OSSEs have become

increasingly realistic and are performed with opera-

tional models (Boukabara et al. 2016). A recent review

of the OSSE methodology and its current state can be

found in Hoffman and Atlas (2016). OSSEs have been

used to evaluate the impact of many types of observing

systems on forecast skill and the DA system. Both Atlas

et al. (2015) andMa et al. (2015) evaluated the impact of

simulated wind lidar observations on forecast skill and

found an improvement in the wind and mass fields, both

in the extratropics and tropics. Moreover, Atlas et al.

(2015) found that the short-term forecasts over the

tropics were significantly reduced. OSSE studies have
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also evaluated the impact of rawinsondes globally for

wind and temperature fields (Privé et al. 2014a) and

dropsondes for tropical cyclones (Privé et al. 2014b).

Both studies found an improvement in the short-term

forecast skill for wind and temperature fields and trop-

ical cyclone tracks, respectively. Other OSSE studies

have been used to evaluate the impact of different DA

systems on forecast skill (Kleist and Ide 2015a,b).

Previous studies have found that supplemental

observations improve forecast skill, but none have

evaluated extratropical cyclones using the targeted ob-

servation approach with a modern NWP system in the

OSSE framework. This study will be the first to look at

the impact of targeted observations, along with obser-

vation type, on the forecast skill of Pacific cyclones in

the OSSE framework. Additionally, the hypothesis of

whether or not targeted observations can improve

Pacific cyclone forecasts is tested in this study, and results

can provide guidance to mission scientists when planning

real field campaigns, such as dropsonde placement.

This study is the first of a two-part study, where Part II

looks at the ability of targeted dropsonde observations

to mitigate the potential loss of the Suomi National

Polar-Orbiting Partnership (NPP) satellite and the ex-

pected increase in forecast error of high-impact weather

events until data from the replacement satellite,NOAA-

20 (launched in November 2017), is used by global

models (English et al. 2018). Here, we use OSSEs to

quantify the impacts of targeted dropsonde observa-

tions, deployed over the Pacific Ocean, on the forecast

accuracy of three high-impact weather events over the

United States. A case study makes establishing statisti-

cal significance difficult since results can varywith storm,

forecast hour, initialization date, and verification region.

This highlights why there is still some debate as to the

benefit of targeted observations and the need for more

research in this area. There are three primary objectives

of this study: 1) investigate the relative importance of

different types of dropsonde measurements (tempera-

ture, wind, and specific humidity) on forecast error,

2) investigate the impact of different Pacific Ocean

sampling domains on forecast error, and 3) conduct an

in-depth analysis of select cases to understand the me-

teorological features impacting results with targeted

observations.

2. Data and methodology

a. OSSE framework and setup

An OSSE system contains the following components:

1) a long atmosphericmodel integration using a ‘‘state of

the art’’ system considered to be the ‘‘truth’’ or nature

run (NR) that represents the real atmosphere (e.g.,

possesses a realistic climatology, realistic storm track

patterns); 2) observations simulated from the NR using

the same distribution and accuracy characteristics as

real-world observations; 3) simulation of new observa-

tions with realistic accuracy and coverage; 4) a different

DA/forecast system, which is typically set to a lower

resolution than the NR, to ingest the simulated obser-

vations; and 5) validation of the entire OSSE system

(Hoffman and Atlas 2016). OSSEs can be used to eval-

uate the impact of global, regional, or mesoscale ob-

servations on NWP.

TheNRused in this study, T511NR, is a 13-month free-

running forecast with T511 horizontal resolution (about

40km) and 91 model levels and was produced in 2005 by

ECMWF using their Integrated Forecast System (IFS),

version cy31r1. The forecast was initialized at 1200

UTC 1 May 2005, with the operational analysis as the

initial conditions, and ran until 0000 UTC 1 June 2006,

with output every 3h (Masutani et al. 2007; Andersson

andMasutani 2010). The listed year is somewhat arbitrary

since this is a simulated atmosphere. The only link to the

real atmosphere for 2005–06, aside from initial conditions,

is through the lower boundary conditions (sea surface

temperatures and sea ice data) (Riishøjgaard et al. 2012).

For further details on theECMWFmodel, seeErrico et al.

(2013) and references therein. The T511 NR was vali-

dated, and it was found that hurricanes, midlatitude cy-

clones, midlatitude jets, and cloud statistics were realistic

(Masutani et al. 2007; Reale et al. 2007; Andersson and

Masutani 2010; McCarty et al. 2012; Errico et al. 2013).

In an OSSE, appropriate and realistic errors should be

added to simulated observations to properly simulate real-

world observation statistics. For a detailed explanation of

the various sources of error in the context of OSSEs, see

Errico et al. (2013). In this study, perfect simulated ob-

servations are used and, therefore, are a limitation of the

study (Masutani et al. 2010). However, the goal of this

study is to evaluate the impact of observations in data-

sparse regions, and using simulated perfect observations

satisfies this goal. Moreover, there is an advantage to using

perfect observations; any impact on the forecast skill could

be greater thanwhatwould be seen in the real world due to

the observations. It should be noted that the perfect sim-

ulated observations will be prescribed uncertainties when

assimilated by the Gridpoint Statistical Interpolation

analysis system (GSI). More information on the magni-

tudes of these uncertainties can be found in the GSI user’s

guide (Hu et al. 2017).

Perfect simulated observations are generated from

the NR for January and February 2006 at times and

locations of actual observations during 2012. This

approach leads to observations with realistic spatial

distributions that do not consider the NR cloud field.
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This can result in simulated observations in unrealistic

locations (Boukabara et al. 2016), and so the distribution

of the NR cloud field in the region of simulated drop-

sonde observations was examined. It was found that the

percentage of cloudy to cloud-free grid points was sim-

ilar for all experiments for the two case studies of pri-

mary focus in this manuscript. Therefore, issues with

cloud-affected observations should not significantly

alter the presented results.

Simulated satellite observations were generated using

the Community Radiative Transfer Model (CRTM,

version 1.2.2) and temperature and specific humidity

observations from the NR. A newer version of the

CRTM, version 2.2.1, is used by the assimilation system

employed in this study. Conventional observations

(wind, temperature, surface pressure, and specific hu-

midity) were simulated by sampling the T511 NR at the

location and time given by the National Centers for

Environmental Prediction (NCEP) for that observation.

For more details on the generation of simulated satellite

and conventional observations used in this study, see

Zhu et al. (2012), and for access to the data, visit the Joint

OSSE website (http://jointosse.org/). For reference, the

dataset used in this study was also used in Riishojgaard

et al. (2012) and Ma et al. (2015). A list of satellite and

conventional observations assimilated by the NCEP

GlobalDataAssimilation System (GDAS) for this study

can be found in appendix A in Tables A1 and A2, re-

spectively. The list of satellites was motivated by the

need to be as close to operations as possible so the

conclusions would be more useful to society. As a result,

the exact satellite instruments assimilated were de-

termined by the version of the operational NCEP system

selected for this study.

For all three experiments (Idealized, Sensitivity, and

Flight) described in Table 1, dropsonde observations of

wind, temperature, and specific humidity are simulated

from the T511 NR. They do not drift with the wind

and, therefore, should be considered model soundings.

Dropsondes are released in the sampling domain every

618 of latitude–longitude from 70hPa and descend to the

surface crossing the following pressure levels: 70, 100,

150, 200, . . . , 650, 700, 725, 750, . . . , 975, and 1000hPa.

These pressure levels go beyond, but still include, man-

datory levels that are greater than and equal to 70hPa.

Lower pressure levels are not included due to the ex-

periment design that requires the simulated dropsondes

to mimic an actual flight campaign with the Global Hawk

(GH), which has an altitude limit of 19.8km. Flight path

determination is discussed in section 3.

In this study, the analysis/forecast system used to as-

similate the observations is the NCEP GDAS Q1FY15

operational implementation using the 3D variational

(3D-Var) configuration with the hybrid ensemble

Kalman filter (EnKF) (Kleist and Ide 2015a). Specifics

of the FY15 implementation can be found using the

URL in the McClung (2014) reference. Both the GSI

and GFS components are configured with T382 hori-

zontal resolution and 64 vertical levels (about 50 km).

The EnKF component is set up with T254 horizontal

resolution and 64 vertical levels. The GSI hybrid

ensemble–variational DA system is used to initialize the

GFSmodel. The theoretical framework, implementations,

and tests of the hybrid system can be found in Wang

(2010), Kleist (2012), Wang et al. (2013), and Kleist and

Ide (2015a). The flow-dependent background error co-

variance is estimated using a serial square root filter

form of an EnKF developed by Whitaker and Hamill

(2002) and Whitaker et al. (2008). An ensemble with

80 members is employed in this research. The weights

given to the static (fixed) and ensemble-based flow-

dependent background error covariances are 0.125 and

TABLE 1. List and description of the different experiments performed in this OSSE study.

Expt Name Dropsonde obs Description

Control CTL None Control experiment, Jan–Feb 2006, includes simulated conventional

and satellite observations (see Table A1)

Idealized Ideal_tquv Temperature, specific

humidity, and wind

CTL plus simulated dropsonde observations over a large domain

over the northern Pacific Ocean

Ideal_t Temperature

Ideal_q Specific humidity

Ideal_uv Wind

Sensitivity Sensit_tquv Temperature, specific

humidity, and wind

CTL plus simulated dropsonde observations over a smaller domain

over the northern Pacific Ocean shown as regions

sensitive to error growth determined by the ETS method

Flight Flight_tquv Temperature, specific

humidity, and wind

CTL plus simulated dropsonde observations over a flight path

that is informed by the smaller domain established in the Sensitivity

experiment
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0.875, respectively. The horizontal localization length

scale for the hybrid system and EnKF is level depen-

dent, increasing from 350km at the surface to 1300km

at the model top. Multiplicative inflation (Whitaker

and Hamill 2012) is employed to maintain ensemble

spread, with the multiplicative factor set to 0.85. This

model configuration is used for all experiments, which

are supported by the Sensing Hazards with Opera-

tional Unmanned Technology (SHOUT) project. The

SHOUT project tests the impact of targeted obser-

vations from unmanned aircraft systems (UASs),

specifically the GH, on the forecast performance of

high-impact weather events from NWP systems (Kren

et al. 2018, manuscript submitted to Wea. Forecasting).

The OSSE system used in this study was validated by

comparing our results to OSE results that used the same

model configuration (Kren et al. 2018, manuscript sub-

mitted to Wea. Forecasting). A comparison of globally

calculated anomaly correlation coefficients versus fore-

cast hour showed that the OSSE system behaved in a

similar manner to that of the OSE. Additionally, the

minimum sea level pressure (SLP) and 6-h accumulated

precipitation of the three storms found in the NR (de-

scribed in section 4a) were compared to what is typical

for real-world winter extratropical cyclones and were

found to be realistic. For reference, simulated datasets

produced from the T511NRwith the samemethodology

have been used by previous researchers (Riishojgaard

et al. 2012; Ma et al. 2015; Atlas et al. 2015; Cucurull

et al. 2017) and, in some cases, compared to corre-

sponding OSEs for calibration purposes. In those stud-

ies, the spectral resolution of the forecast model was set

to T382 in a 2012 version of the NCEP GFS model.

b. Total energy error calculation

The impact of additional observations on forecast skill

is quantified using an approximation of the dry total-

energy norm, hereafter total energy error (TEE), a well-

known formula that provides a comprehensive measure

of forecast error by taking into account temperature and

wind errors at multiple vertical levels (Hamill et al.

2013). In this study, we calculate energy error (in meters

per second) at 200, 500, and 700 hPa, consistent with the

vertical levels used by the ETS technique (Zhang et al.

2016). Near-surface fields considered by Hamill et al.

(2013) are not used here because their analysis errors are

small over the Pacific Ocean, the region of focus for this

study, and for the reasons presented in appendix B.

Additionally, the dry total-energy norm is used instead

of the moist energy norm because moist processes, such

as convection, occur at scales smaller than the resolution

of the model used here, and moist processes have been

shown to result in targeting areas that are less reliable

than those found with TEE (Huang and Meng 2014).

Equation (1) shows the formula used in this study:
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where u, y, and t represent the difference between the

forecast and the NR for the zonal wind, meridional wind,

and temperature, respectively. Additionally, Tr is the ref-

erence temperature (300K), and cp is the specific heat of

dry air at a constant pressure (1004JK21kg21). The veri-

fication region in this study is represented by A and thus,

with the integral, calculates the average error over domain

A. In section 4, domain A is either the western United

States (WEST_USA: 308–508N, 2358–2608E) or Alaska

(ALASKA: 558–708N, 1958–2208E). This verification do-

main is chosen because 1) the assimilation of observations

over the Pacific Ocean (see Fig. 2) should impact forecast

error downstream of that location (i.e., the United States),

and 2) the impact could extendbeyond the stormof interest.

In section 5, domain A is smaller and consists of 148 3 148
boxes over the contiguous United States (CONUS). This

smaller verification domain is used for the purpose of iso-

lating and analyzing the impact of the observations on the

storm itself and not the surrounding environment.

3. Experiment design

A series of experiments was conducted to understand

the impacts of dropsonde measurement type (tempera-

ture, wind, and specific humidity) and dropsonde sam-

pling domain on forecast error. The list of experiments

and their descriptions are presented in Table 1. The

control (CTL) was initialized at 1800 UTC 1 January

2006 using NCEP production run files and cycled for

2 months (1 January–28 February 2006). Both simulated

satellite and conventional observations listed in Tables

A1 and A2 were assimilated during this time, with the

first 10 days considered the spinup period. Plots of

Northern Hemisphere analysis error (CTL NR) for ge-

opotential height, temperature, and wind at multiple

pressure levels were used to find this spinup period.

Additionally, all cases studied here occur well beyond

this spinup period. For the three experiments described

in Table 1 (Idealized, Sensitivity, and Flight), dropsonde

observations were assimilated over the northeastern

Pacific Ocean, in addition to observations in the CTL,
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and cycling was initiated using initial conditions from

the CTL. The northeastern Pacific Ocean was chosen for

multiple reasons: 1) it was an area of interest under

SHOUT, 2) large analysis errors are typically found in

this region during the winter (see section 1), and 3)

significant analysis errors were found in this region when

comparing the CTL to the T511NR (see Fig. 1). Figure 1

includes both fields that are used in the TEE formula

and fields that have meteorological significance. Root-

mean-square error (RMSE) is used as the metric since it

is a well-established method for showing the difference

in values between a population and a sample.

For the Idealized experiments, perfect dropsonde

observations (temperature, wind, and specific humidity)

were simulated at every grid point (data density of 618
of latitude–longitude) within the idealized domain

(purple region defined in Fig. 2) and then assimilated

into the NCEP GFS system. For the Sensitivity and

Flight experiments, maps were generated using the ETS

method to identify regions sensitive to large error growth

and to aid in the placement of simulated dropsonde ob-

servations. In the ETS method, the gradient of the fore-

cast error variance to analysis error variance is calculated

for each predefined verification region. As an approxi-

mation of the ET method (Bishop and Toth 1999), it has

the advantage of only requiring the calculation of a single

transform matrix, making it more computationally effi-

cient. More information on the ETS technique and

its benefits can be found in Zhang et al. (2016) and

Majumdar (2016). The ETS sensitivity was determined

from forecast data that were available approximately

5 days prior to the storm, reaching the predefined veri-

fication region at the verification time (see Fig. 2).

ETS sensitivity maps were then generated to identify

targeting regions for the 2–3-day lead time for each

verification region. Dropsonde releases occur within the

2–3-day time window at 0000, 0600, 1200, and 1800

UTC center times of the analysis cycles, for a total of five

cycles with the same data density as in the Idealized

experiments.

All UAS flight paths are determined using an auto-

mated flight track algorithm (appendix C). It was de-

signed to take into account the gradient in the ETS

sensitivity maps generated for each case and the GH

flight requirements listed in appendix C. The final flight

path, which determines dropsonde release locations,

starts at the 3-day lead time relative to the verification

time at a waypoint determined by the algorithm and

continues until the 2-day lead time, with dropsondes

released for a total of five cycles. This setup is designed

tomimic an actual GH flight campaign with a618 along-
track spacing of dropsonde locations.

Exact dates of cycling for each experiment are dis-

cussed in the pertinent sections. GFS forecasts were

initiated using the analysis from their own GDAS cycle

as their initial conditions. For each experiment, drop-

sonde observations of temperature, wind, and specific

humidity are simulated with varying data densities

FIG. 1. Map of analysis RMSE (CTL vs T511 NR) over the northeastern Pacific for (a) 200-mb zonal winds,

(b) 500-mb zonal winds, (c) 500-mb geopotential heights, and (d) 700-mb temperatures. All fields are calculated and

averaged between 10 Jan and 28 Feb 2006 and include every 6-h analysis cycle (i.e., four cycles per day).

1346 MONTHLY WEATHER REV IEW VOLUME 146



FIG. 2. Schematic of storm tracks for the (a) 29 Jan, (b) 30 Jan, and (c) 25 Feb

storms. Blue circles represent the approximate center of the storm, and the

numbers below show the date when the storm was at that location. All dates are

for 0000 UTC unless noted otherwise. The purple region represents the ideal-

ized domain, the domain in which perfect dropsondes observations (t, q, and uy)

were simulated for the Idealized experiments. The orange boxes represent the

four different 148 3 148 lat–lon verification regions used to analyze observation

impact on forecast performance, and the boxes with the black outline represent

the verification region used to generate the ETS maps.
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specified by each experiment and placed over a region

that is both vertically and horizontally undersampled.

These same fields (except specific humidity—reasons

discussed in section 2b), which the dropsonde observa-

tions are targeted to improve, are in the TEE formula

that is used in the ETS technique for targeting and in the

evaluation of forecast error.

4. Results: Idealized experiments

a. Storm characteristics

Over the 2-month period of the CTL, three storms

were identified in the T511 NR, based on the following

criteria: 1) they had developed or passed through the

northern Pacific Ocean on their way to the West Coast

of the United States; 2) they were long-lived (lasting a

minimum of 4 days); 3) they had a well-defined structure

in the 500-mb (1mb 5 1 hPa) geopotential height field

(low heights and the formation of a closed contour); and

4) they had at least 4–5mm of precipitation over a 6-h

period at any grid point within a 148 3 148 box sur-

rounding the storm when it was over the United States.

The identified storms are denoted as the 29 January

storm, 30 January storm, and 25 February storm, re-

spectively, with the track of each storm shown in Fig. 2.

The 29 January storm began off the southernmost

portion of the east coast of Russia as an upper-level low

passed over a baroclinic region. The upper-level low

supported the formation of a surface low that intensified

as it moved eastward. Around 30–31 January, the low

pressure system merged with another storm originating

off the coast of Russia and intensified, reaching a mini-

mum SLP of 956mb. The system continued to move

toward the northeast into the Bering Sea, bringing pre-

cipitation to south-central and southwest Alaska. Cy-

cling for this storm for each experiment listed in Table 1

was initiated at 1800 UTC 24 January and terminated at

0000 UTC 5 February, with forecasts initiated every

0000 and 1200 UTC between 0000 UTC 25 January and

1200 UTC 2 February.

The 30 January storm formed ahead of the 29 January

storm from a downstream upper-level low. As this

upper-level system moved into the Gulf of Alaska, a

closed low formed aloft and remained with the down-

stream ridge as it moved across the southern part of

Alaska. The closed low weakened and partially dissi-

pated as it tracked south along the coast of Canada and

into the United States. Around 30 January, it began to

strengthen again, and it then intensified further around

1 February due to a short wave originating upstream

along the ridge that was subsequently amplified by an

upper-level low over Canada. The 30 January storm

then moved farther south, into the northwestern United

States and then along the California coast, bringing

small amounts of precipitation to both regions and

obtaining a minimum SLP of 998mb. The storm then

FIG. 3. (top) RMSE in the analysis (w.r.t. T511 NR) and (bottom) change in the analysis RMSE after dropsondes

are assimilated (Idealized 2 CTL) over the northeastern Pacific for (a),(c) 200- and (b),(d) 500-mb zonal wind.

Plots include analysis fields for every cycle (four cycles per day) between 0000UTC 25 Jan and 1200UTC 2 Feb (29

and 30 Jan storms).
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crossed Arizona and New Mexico and began to merge

with the mean flow and dissipate. The cycling and

forecasting period that was used for the 29 January

storm was also used for this storm.

The 25 February storm originated as a closed low off

the coast of Japan, traversing eastward across the Pacific

Ocean toward Alaska. The closed low formed aloft on

25 February and reached the northwestern United

States around 27 February, embedded within an

upper-level ridge. During those 2–3 days, the storm

strengthened, reaching a minimum SLP of 983mb and

bringing precipitation to Washington, Oregon, and

parts of Northern California. Twelve hours after

reaching the United States, the storm exited the coast

of California and penetrated inland, rejoining the

mean flow. As it moved across Colorado and into the

Midwest, the storm began to weaken. A short wave

over southeastern Canada then caused it to intensify

again and form a cold frontal boundary stretching

from Wisconsin to eastern Texas. Cycling for this

storm for each experiment listed in Table 1 was initi-

ated at 1800 UTC 19 February and terminated at 1800

UTC 28 February. Forecasts were initiated every 0000

UTC and 1200 UTC between 0000 UTC 20 February

and 0000 UTC 28 February.

b. Analysis and forecast performance

Before initiating cycling with added dropsonde ob-

servations, the analysis error from the CTL was exam-

ined. Figures 3a,b and 4a,b have large analysis RMSE

over the central and eastern portions of the northern

Pacific Ocean at the 200- and 500-mb pressure levels,

which highlights a region with the potential for a re-

duction in the analysis error following the assimilation

of dropsonde observations. The location of the larger

analysis errors is spatially consistent with previous

studies (McMurdie and Mass 2004; McMurdie and

Casola 2009). Temperature at 700mb and geopotential

height at 500mb were also examined (not shown) and

were found to have the same general pattern of RMSE

shown in Fig. 1. After assimilating the dropsonde ob-

servations into theNCEPGFS system, the analysis error

was examined (Figs. 3c,d and 4c,d) and was found to be

reduced in the idealized domain (purple area high-

lighted in Fig. 2), verifying the impact of the dropsonde

observations on the analysis.

Following the multiday cycling for each Idealized

experiment, the forecast error is examined using the

formulation of the TEE equation described in section 2b.

Results for each storm are shown in Fig. 5. In addition

to the percent mean difference (solid lines), this

figure shows the 95% confidence interval established

using the paired t test (dashed lines), where the two

populations being compared are each experiment versus

the CTL. Therefore, results are statistically significant

when the solid line is beyond the bounds established

by the corresponding dashed line. Variability is high

in Fig. 5 due, in part, to averaging across a broad range

of forecast lead times (0–7 days). These figures are

produced using data from the spinup period of the Ide-

alized experiments since the conclusions do not change

by excluding that period. For Figs. 5 and 6 (andFigs. 12, 13),

FIG. 4. As in Fig. 3, but between 0000 UTC 20 Feb and 0000 UTC 28 Feb (25 Feb storm).
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all errors are calculated by first calculating the dif-

ference with respect to the T511 NR for each field of

interest (e.g., TEE, SLP, precipitation, and geopotential

height) and then averaging those values over the des-

ignated verification domain(s) at the designated verifi-

cation date(s) for each experiment and the CTL. Then,

this information is plotted as either an absolute value

or a percent difference with respect to the CTL.

The Ideal_tquv experiment that assimilated all ob-

servation types (t, q, and uy) in the idealized domain

shows the largest reduction in forecast error relative to

the CTL, about 2%–6% greater than other experiments

(see Fig. 5). Moreover, in terms of individual observa-

tion types, wind observations (Ideal_uv) were found to

reduce the forecast error by the largest amount, fol-

lowed by temperature (Ideal_t) and specific humidity

(Ideal_q). This occurs for each storm, regardless of

whether the average is calculated with respect to fore-

cast hour or verification date. Results are variable but

significant for several time periods. For example, in all

cases, the addition of perfect dropsonde observations

over the idealized domain results in approximately a

10% improvement in forecast error within the first

3 days of the forecast. In Fig. 5a, the reduction in fore-

cast error is greater than 20%, due to the idealized do-

main in Fig. 2, including all of Alaska. As a result, the

initial forecast error is greatly reduced relative to CTL.

For all storms, the impact of the data within the first

2–3 days of the forecast is generally statistically signifi-

cant and positive.

In Figs. 5d–f, the average performance of all forecasts

valid on certain dates is shown. Since most of the fore-

cast error is likely due to storm activity, and the goal is to

improve forecast of the storm, Figs. 5d–f are generated

FIG. 5. TEE for each storm (columns) over the western United States for the 25 Feb and 30 Jan storms and over Alaska for the 29 Jan

storm. Error values are generated by calculating TEE for all forecasts with a 0–7-day lead time then averaging the error for each storm

over the domain of interest (eitherWEST_USA or ALASKA). This metric is calculated with respect to (top) forecast hour and (bottom)

verification date. The solid lines for each case study represent the percent difference between the CTL and the experiments: Ideal_tquv

(purple), Ideal_uv (green), Ideal_t (red), and Ideal_q (blue). The corresponding dashed lines represent the 95% confidence inter-

val obtained using the paired t test, with one population being an experiment and the other the CTL. Boxes in the top row highlight the

1–3-day lead time. Labeled tick marks in the bottom row highlight verification regions. For the 29 Jan storm: AL (Aleutians),

YU (Yukon), andAN (Anchorage). For the 30 Jan storm:WA(Washington), OR (Oregon), CA (California), andCO (Colorado). For the

25 Feb storm: WC (West Coast), CA (California), CO (Colorado), and IA (Iowa).
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to highlight the change in forecast error for the storm

itself. Though many of the results in these plots show a

reduction in forecast error due to the assimilation of

supplemental dropsonde observations, some show an

increase in forecast error or no impact. This could be

because DA is a statistical procedure that can have a lot

of sampling noise due to the ensemble size.

For the 29 January storm, the impact of targeted

observations on forecast error is positive and sta-

tistically significant from 0600 UTC 29 January to

1800 UTC 30 January for Ideal_tquv; from about 0000

UTC 1 February to 1800UTC 2 February for Ideal_tquv

and Ideal_uv (with Ideal_t and Ideal_q showing signifi-

cant improvement during the last 12 h); and around 0000

UTC 4 February for all three experiments. At 1200

UTC 2 February, the storm is passing over Anchorage,

Alaska, and therefore, this region could see an im-

provement of ;10% in forecast error, as shown in

Fig. 5d. For the 30 January storm, results are significant

for the following time periods: 0000 UTC to 1800

UTC 2 February for Ideal_tquv and Ideal_uv, and 1800

UTC 2 February to 1200 UTC 5 February for all three

experiments, with Ideal_q shifting to insignificant for

about a 24-h period in the middle of that time window.

As a result, California (Colorado) could see up to a

13% (15%) reduction in forecast error. Around 1200

UTC 31 January, the variability is large for the

30 January storm for all experiments. At this time,

there is an interaction between the ridge ahead of the

storm and a cutoff low within the ridge, resulting in

uncertainty in the forecasts. Figure 5f shows that re-

sults are significant for the 25 February storm at 1200

UTC 24 February for the Ideal_q experiment, at 1800

UTC 24 February for the Ideal_tquv experiment,

and between 0000 UTC 27 February and 1800

UTC 28 February for the Ideal_tquv experiment (with

Ideal_uv and Ideal_t also showing statistical signifi-

cance during portions). An improvement in forecast

error of;7% at 0000 UTC 28 February for Ideal_tquv

occurs for approximately a 24-h period when the

storm is over the United States, moving eastward

from California to Iowa. Additionally, the variability

FIG. 6. Scatterplots of (top) TEE and (bottom) SLP RMSE for the CTL (x axis) and the Ideal_tquv experiment (y axis) for the three storms

[(a),(d) 29 Jan; (b),(e) 30 Jan; and (c),(f) 25 Feb storms]. Errors are calculated for each indicated forecast lead time relative to each storms

verification regions (148 3 148 lat–lon boxes, as specified in Fig. 2) and then averaged over the same regions. The colors represent the different

verification regions (see Fig. 5 caption). The different symbols represent different forecast lead times relative to each verification region.
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is high from 0000 UTC 26 February to 0000 UTC 27

February (Fig. 5f) due to the storm momentarily be-

coming a closed low off the West Coast of the United

States. An increase in forecast error due to a closed

(25 February storm) or cutoff low (system down-

stream of 30 January storm) and their tendency to

have no clear error propagation or forecast error

growth is well known and documented in the forecast

community (Gurka et al. 1995; Nieto et al. 2005;

Caruso and Businger 2006; Nieto et al. 2008; Oakley

and Redmond 2014). The results discussed here (see

Fig. 5) do not change when using the 500-mb geo-

potential height RMSE instead of TEE as the metric

for measuring changes in forecast error. For the 6-h

accumulated precipitation, the differences in the

errors are not statistically significant over the vast

majority of forecast lead times and verification dates

(not shown), such that the few exceptions that do exist

occur at verification dates and lead times beyond the

scope of this study. Precipitation will be discussed

further in section 5.

For each storm, the forecast error is reduced during

portions of its development due to the assimilation of

perfect dropsonde observations upstream of its location.

This result shows that targeted observations, when

deployed over a large domain, can have a positive im-

pact on forecast error for short-term weather forecasts.

c. Verification regions

Scatterplots of forecast error for each storm over each

verification region (see Fig. 2) are presented in Fig. 6.

This approach provides individual snapshots of forecast

performance in and around each storm. In the following

sections, only experiments with all dropsonde data types

are evaluated, since the tquy experiment resulted in the

largest overall reduction in forecast error and is themost

realistic assimilation of dropsonde observations.

Figures 6a–c show that overall, TEE is reduced in the

Ideal_tquv experiment relative to CTL for all storms

during the first 3 to 4 days of the forecast, consistent

with Fig. 5. Beyond day 4, results are generally neutral,

with the exception of the 30 January storm. For the

30 January storm, forecast error decreases with addi-

tional dropsonde observations for almost all forecast

lead times, up to approximately forecast hour 144.

Overall, the largest reduction in forecast error for the

30 January storm is over the California verification region,

with Colorado and Oregon also showing improvement,

but to a lesser extent (consistent with Fig. 5e). For the

25 February storm, the largest (smallest) reduction in

forecast error for Ideal_tquv relative to CTL occurs over

California at shorter (longer) lead times (i.e., at times less

than or greater than approximately forecast hour 84). The

opposite occurs for Colorado. This suggests that the re-

duction in forecast error for the Ideal_tquv experiment, as

shown in Fig. 5f,may be the result of an early improvement

in the forecast for California and a later improvement in

the forecast for Colorado. Both the Pacific and Iowa ver-

ification regions see no significant change in forecast error

(consistent with Fig. 5f). For the 29 January storm, An-

chorage shows the most improvement, as also seen in

Fig. 5d. Similar results are found in the 500-mb geo-

potential height RMSE (not shown) for all three storms.

We also examined precipitation error for all three storms

(not shown) and found no significant difference between

the experiments and the CTL.

When SLP is used as a metric (Figs. 6d–f), results are

similar to Figs. 6a–c. For the 29 January storm (Fig. 6d),

the vast majority of forecast lead times for each verifica-

tion region show a reduction in forecast error. This is in

contrast to TEE, which is reduced for all regions for

shorter lead times. For the 30 January storm, the decrease

in the SLP RMSE (Fig. 6e) is reduced, compared to

Fig. 6b, which results in the Colorado verification region

shifting from some to no improvement in forecast error.

Forecast error for the 25 February storm (Fig. 6f) is rela-

tively unchanged between the two metrics. Overall, there

is less variation in the data when using SLP, but the pat-

tern and ranking of the verification regions is equivalent.

In general, the 30 January storm shows the most im-

provement in forecast error, followed by the 29 January

storm, and then the 25 February storm, with neutral

results. The overall neutral results for the 25 February

storm could be the result of amultitude of things, such as

1) model physics errors preventing forecast improve-

ments, 2) the resolution at which the GFS was run being

too coarse to see a significant impact in smaller-scale

processes, 3) the nonlinear nature of the atmosphere,

and 4) the DA system not making the best use of the

observations. To better understand why some storms

seem to have greater improvement in forecast error than

others, we investigate the sources of error for two of the

storms, 25 February and 30 January, in relation to ob-

servation placement in the next section.

d. Sources of error

For this part of the analysis, we focused on areas out-

side the idealized domain shown in Fig. 2, where analysis

errors would likely be larger (as shown in Figs. 3a,b and

4a,b) and could grow to negatively contribute to forecast

error. For each storm, we isolated which meteorological

structures entered and exited the idealized domain and at

what time (see Table 2 for the 30 January storm and

Table 3 for the 25 February storm). After these meteo-

rological structures enter the idealized domain, the

propagation of the data impact from the dropsonde data
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will be with the group velocity, which is faster than the

phase velocity of the larger structures (Szunyogh et al.

2002). To understand why certain forecasts performed

poorly, compared to the CTL, we tracked regions of high

TEEback from a later forecast to the analysis time to find

their origins and to isolate whatmeteorological structures

most impacted forecast performance.

Figure 7 shows average forecast error based on TEE

for the 30 January and 25 February storms and highlights

the significant and consistent reduction in forecast error

for the 30 January storm. For that storm, the forecast

error is reduced for the Ideal_tquv experiment rela-

tive to CTL for forecasts initiated between 1200

UTC 27 January and 0000 UTC 2 February (see

Figs. 7b–d). Prior to this date, the impact is neutral (see

Fig. 7a), partially due to the cutoff low discussed in

section 4b. Between 1200 UTC 27 January and 0000

UTC 2 February, all three synoptic structures identified

in Table 2 are sampled by the simulated dropsondes.

Further analysis of the horizontal propagation of TEE

in and around the storm revealed that of the three

structures, the ridge upstream of the storm had the most

impact on the accurate forecast of the storm due to

large errors associated with the developing ridge in the

CTL (see Figs. 8a,b). This error starts to reduce in the

Ideal_tquv experiment (see Figs. 8c,d) when the ridge is

completely in the idealized domain (beginning around

1800 UTC 26 January) and thus fully sampled by the

simulated dropsondes. The importance of the ridge up-

stream of the storm could be tied to its later development

into a Rex block pattern, which is a difficult weather

pattern to predict due to its abrupt onset, resulting in an

inherent sensitivity to blocking onset in NWP models

(Pelly 2001; Lawson andHorel 2015). On thewhole, most

forecasts for the 30 January storm see a positive impact

with the addition of simulated dropsonde observations,

and this tendency is seen in the average error (Figs. 5, 6).

Forecast error plots for the 25 February storm reveal

an overall neutral impact on forecast error for that storm

when assimilating simulated dropsonde data into the

NCEP GFS. The impact remains neutral until 1200

UTC 25 February, as shown in Fig. 7. Aside from the

storm itself, three atmosphere structures were identified

as having the potential to impact the development of the

storm (see Table 3).When examining the propagation of

TEE for individual forecasts, we found that the majority

of the forecasts showed mixed results in forecast error

over the western United States (see Figs. 7e,f) due to a

short wave downstream of the storm. In this case, the

development of the short wave is influenced by

TABLE 3. Meteorological features influencing the 25 Feb storm along with when each feature exits and enters the idealized

sampling domain.

Feature Enters sampling region Exits sampling region

Ridge downstream of storm Before 20 Feb 0000 UTC 25 Feb 2006

Main storm Halfway: 0000 UTC 21 Feb 2006 0000 UTC 27 Feb 2006

Fully: 0000 UTC 22 Feb 2006

Ridge upstream of storm 1200 UTC 23 Feb 2006 0000 UTC 28 Feb 2006

Short wave 0600 UTC 25 Feb 2006 1800 UTC 28 Feb 2006

TABLE 2. Meteorological features influencing the 30 Jan storm along with when each feature exits and enters the idealized sampling

domain.

Feature Enters sampling region Exits sampling region

Cutoff low Before 20 Jan Begins: 1200 UTC 26 Jan 2006

Halfway: 2100 UTC 29 Jan 2006

Fully: 0000 UTC 31 Jan 2006

Ridge downstream of storm Before 20 Jan Begins: 1500 UTC 27 Jan 2006

Halfway: 1200 UTC 29 Jan 2006

Fully: 0000 UTC 31 Jan 2006

Main storm Before 20 Jan Begins: 0900 UTC 31 Jan 2006

Fully: 0600 UTC 1 Feb 2006

Ridge upstream of storm Halfway: 1200 UTC 25 Jan 2006 Around 1200 UTC 1 Feb 2006

Fully: 1800 UTC 26 Jan 2006

Upper-level low over Canada Never Never
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FIG. 7. Plots of average forecast error, measured as TEE, for the CTL (black solid

line) and Ideal_tquv (purple dashed line) over the western United States for the (left)

30 Jan and (right) 25Feb storms.Only select forecast initialization times, specified in the

title of each plot, are shown to highlight certain patterns of interest as discussed in

the text.
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atmospheric structures not sampled (e.g., upper-level

low over eastern Canada) and undersampled (e.g., ridge

downstream of storm and short wave), resulting in

neutral impact. Additionally, forecasts initiated before

1200 UTC 25 February assimilated observations before

the storm became a closed low, which contributed to

the mixed results seen before this date. Around a fore-

cast initialization time of 1200 UTC 25 February, the

Ideal_tquv experiment begins to show a consistent re-

duction in forecast error relative to the CTL, as shown in

Fig. 7g. This reduction is found to be due to sampling the

embedded short wave upstream of the storm and the

storm when it temporarily becomes a closed low

(Figs. 9a,c). Additionally, results show that the short

wave has the greater impact on forecast error, and, as a

consequence, sampling that short wave results in a larger

reduction in forecast error (Figs. 9b,d).

5. Results: Sensitivity and Flight experiments

In the previous experiments, a large idealized domain was

sampled, and simulated dropsonde observations were pro-

duced. This is not realistic for targeted observations since

flight campaigns can only sample a portion of the atmo-

sphere over a short period of time. To evaluate the impact

of a more realistic domain, we looked at two smaller

sampling domains: a sensitivity and a flight domain. For the

Sensitivity and Flight experiments, instead of cycling for

multiple days, as in the Idealized experiments, cycling is

performed for five cycles or approximately a 24-h period due

to themaximum flight duration of theGH. The flight occurs

2–3 days prior to the storm reaching the verification region

(0000UTC 30–31 January for the 29 January storm, 1200

UTC 30–31 January for the 30 January storm, and 0000

UTC 24–25 February for the 25 February storm).

a. ETS maps

Maps of normalized ETS values (Fig. 10) highlight the

sensitive regions that should be targeted to reduce the

forecast errors over a verification region with a specific

lead time. Each map is an average of five cycles in order

to capture the movement of the signal over a 2–3-day

range and to average out noise. The ETS maps vary

for each storm and each verification region, and thus,

one verification region was chosen for each storm: An-

chorage (AN) for the 29 January storm, Oregon (OR)

for the 30 January storm, and California (CA) for the

25 February storm. Verification regions were selected

using the following four factors for guidance while not

requiring that all were satisfied: 1) meteorological

impact, 2) the potential for improvement in the CTL,

3) how much the forecast improved in the Idealized

FIG. 8. Spatial distribution of (top) CTL forecast TEE and (bottom) the difference between CTL and Ideal_tquv

TEE for two forecast initialization times [(a),(c) 0000 UTC 29 Jan and (b),(d) 0000 UTC 31 Jan 2006]. Both initial-

ization times have a verification date of 0000UTC 2 Feb 2006. Line contours are 500-mb geopotential heights showing

the location of the storm. Note difference in color bars due to larger errors in longer-range forecasts.
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experiments, and 4) the spatial pattern of the sensitive

regions shown in the ETS maps. The sensitivity domain

is defined using Fig. 10, such that simulated observations

for the Sensitivity experiments are generated where the

ETS is greater than or equal to 0.5 (locations enclosed by

the white contour lines in Fig. 10). This method results

in a total of 94, 765, and 349 dropsondes being released

for the 29 January, 30 January, and 25 February storms,

respectively.

In Fig. 10, the red dots represent the location of simu-

lated dropsonde observations along the flight path gener-

ated for each storm. The number of dropsondes deployed

and the flight time for the Flight experiments are in the

titles of each plot. The flight path domain is defined by

creating simulated flight paths over the sensitivity domain

based upon aircraft capabilities, as described in section 3.

Specific flight paths are generated using an automated al-

gorithm to place simulated dropsondes over regions with

high ETS values (see appendix C).

b. Analysis and forecast performance

Before evaluating any change in forecast error, the

impact of the targeted dropsonde observations on the

analysis error was assessed. Figure 11 shows the change

in the 500-mb zonal wind RMSE for the analysis after

the assimilation of additional dropsonde observations

over the sensitivity (Figs. 11a–c) and flight (Figs. 11d–f)

domains for each of the three storms. In these plots, the

analysis error is reduced over the selected regions

(Fig. 10) for both sets of experiments. Plots generated on

other pressure levels (200 and 700mb) and for other

variables (temperature, SLP, and geopotential height)

show similar results (not shown).

Percent change in TEE for the three sampling do-

mains (idealized, sensitivity, and flight) for forecasts

initialized at 2–3-day lead times for each storm are

shown in Fig. 12. As in Fig. 5, the solid lines in this figure

represent the percent mean difference, and the dashed

lines represent the confidence interval.When comparing

the verification regions of interest for each storm, the

29 January storm shows the largest reduction in forecast

error for the Idealized experiment (TEE of222%, SLP

of 21.2mb) and the least for the Sensitivity and Flight

experiments, with the forecast error for the Sensitivity

experiments not significant. The 30 January storm has

the second-largest reduction in forecast error for the

Idealized experiment (TEE of 216%; SLP of 20.4mb)

and the largest reduction in forecast error for the Sen-

sitivity and Flight experiments (TEE of23% and22%;

SLP of 20.15 and 20.5mb, respectively). Results for

this storm are statistically significant at the 95% confi-

dence interval for all three experiments. Finally, the

25 February storm has the smallest reduction in

forecast error for all experiments (TEE of 27% for

Idealized,22% for Sensitivity, and21% for Flight; SLP

of 10 2mb for Idealized and no change for the other

experiments), with none of the results being statistically

significant. Between the West Coast and California

FIG. 9. As in Fig. 8, but for the 25 Feb storm with forecast initialization times of (left) 1200 UTC 23 Feb and (right)

1200 UTC 25 Feb 2006 and a verification date of 0600 UTC 27 Feb 2006.
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verification regions for the 25 February storm, there is an

increase in the forecast error variability (dashed line)

and a decrease in the mean forecast error (solid line) for

the Idealized experiment. As before, this is likely due to

the storm temporarily becoming a closed low before re-

turning to the mean flow. During this same time period,

the Idealized experiment shows less improvement, com-

pared to the other two experiments. This is due to the

closed low deepening much more in the Idealized ex-

periment than the NR for one of the five forecasts, which

results in large errors from one forecast decreasing the

overall forecast improvement. Results were also gener-

ated for 500-mb geopotential heights and 6-h accumu-

lated precipitation (not shown). Plots of the differences in

the geopotential height RMSE were found to have a

pattern and significance similar to that of TEE, whereas

precipitation was not statistically significant.

The Idealized experiment in Fig. 12 has the largest

reduction in forecast error. The Sensitivity and Flight

experiments generally result in small, but statistically

significant, reductions in forecast error. Overall, the as-

similation of targeted observations is found to result in a

statistically significant positive impact over the follow-

ing regions (see Figs. 12a–c): 1) Anchorage for the

29 January storm for the Idealized experiment, 2) Ore-

gon for the 30 January storm for all three experiments,

and 3) California for the 25 February storm for the

Idealized and Sensitivity experiments. Plots of SLP bias

in Fig. 12 result in the same general conclusions.

Scatterplots of forecast error for each storm over each

verification region (see Fig. 2) are presented in Fig. 13.

As before, the Idealized experiments perform the best

for all storms, showing the largest reduction in forecast

error. Additionally, SLP RMSE and TEE results shown

in Figs. 13a,b,d,e for both January storms are consistent

with Fig. 12. For the 25 February storm, the TEE for the

Sensitivity and Flight experiments increases relative to

the CTL (Fig. 13c), which does not match the small re-

duction in forecast error shown in Fig. 12c. However, the

SLP RMSE for the Idealized experiment decreases in

Fig. 12f, which does not match the increase in forecast

error seen in Fig. 12f. This could be because there can be

significant variability in individual results, which is evi-

dent in Fig. 6, where many data points fall on the zero

line, but there are many others that show an improve-

ment in forecast error. Precipitation bias is also evalu-

ated and found to be highly variable from storm to storm

(see Figs. 13g–i). The 30 January storm improved the

most, with the reduction in forecast error being con-

centrated at the longer lead times (66 and 72h). The

25 February storm also improved, but at the shorter

forecast lead times (48 and 54h). These changes in

FIG. 10. Maps of sensitivity indicating regions from where error

growth is expected to influence a verification region the most.

Regions are identified using the ETS method and then normalized

and averaged over a 24-h period (or five cycles) 2–3 days prior to

the verification time. The verification region, shown with the red

box for each storm, is (a) Anchorage for the 29 Jan storm,

(b) Oregon for the 30 Jan storm, and (c) California for the 25 Feb

storm. For the Sensitivity experiments, simulated observations are

generated where the ETS value is 0.5 (white contour line) or

greater. The red dots represent the location of simulated drop-

sonde observations along the flight path generated for each storm.

The title shows the number of dropsondes deployed and the flight

time for each Flight experiment.
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precipitation are small and found to not be statistically

significant (not shown).

Overall, the 29 January storm does not seem to benefit

from targeted observations, as shown by the Sensitivity

and Flight experiments, whereas the 25 February storm

does benefit. The 30 January stormhas the largest reduction

in forecast error and improves with all experiments.

These results highlight the positive, but case-dependent,

impact of targeted observations on forecast error in a

real-time campaign scenario.

6. Discussion

A review by Majumdar (2016) of targeted observations

discusses multiple real-world campaigns, some of which

were focused on extratropical cyclones. Even though that

review contains onlyOSE experiments, it is still informative

to compare those results to the OSSE results in this manu-

script since they tend to overestimate the forecast error

reduction. The North Pacific Experiment (NORPEX-98)

campaign sought to improve 1–3-day winter storm fore-

casts over North America and sampled the atmosphere

with about 700 dropwindsondes over the campaign, re-

sulting in the assimilation of approximately 26 soundings

per forecast (Langland et al. 1999a). Results showed an

average reduction in forecast error for the targeted cases

of about 10% for 500-mb geopotential heights. This real-

world result is greater than the approximate 5% (3%)

reduction seen in the Sensitivity (Flight) experiments

using simulated observations for 500-mb geopotential

heights (not shown). Another campaign, the WSR pro-

gram, sought to improve 1–5-day winter storm forecasts

over North America (e.g., Szunyogh et al. 2000; Toth

et al. 2000; Szunyogh et al. 2002; Holland et al. 2004).

For WSR99, about 500 dropwindsondes were deployed

over 19 flights, resulting in about 26 dropwindsondes per

flight assimilated into a low-resolution (T62) version of

the NCEP operational 3D-Var assimilation system

(Szunyogh et al. 2000). Szunyogh et al. (2000) found that

the largest surface pressure RMSEs were reduced by

10%–20% (or 0.5mb). Similar results were found for the

2000 WSR program, as presented in Szunyogh et al.

(2002). When looking at 2-day lead times for our work,

the SLP RMSE reduced by up to 0.2mb for both the

Sensitivity and Flight experiments (see Figs. 12d–f).

Hamill et al. (2013) also examined the impact of targeted

observations using observations from theWSR program,

but in a 4DVar system, and found neutral impacts on

average. However, only about eight dropsondes (776

over program) per flight were assimilated, which is much

fewer than the approximately 70 dropsondes assimilated

per cycle in this OSSE study.

One reason for the differing results between these

past studies and the Sensitivity and Flight experiments

could be due to the ability of the Hybrid 3DEnVar

T382L64 system to more effectively propagate in-

formation from data-rich to data-poor areas and thus is

not as vulnerable to data gaps (Kelly et al. 2007). As a

FIG. 11. Change in the 500-mb zonal wind analysis RMSE after dropsondes are assimilated for the (top) Sensitivity and (bottom) Flight

experiments and for (a),(d) 29 Jan; (b),(e) 30 Jan; and (c),(f) 25 Feb storms.
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result, supplemental observations may not have the

same impact on forecast skill as seen in an inferior

assimilation system (Kelly et al. 2007). For example,

work by Buizza et al. (2007) found a 4% reduction in

forecast error verified over North America using

ECMWF 4D-Var system when studying the impact of

Pacific Ocean observations. This is much lower than

previous studies that have used a 3D-Var nonhybrid

system (e.g., Langland et al. 1999a; Szunyogh et al.

2000, 2002) but closer to the results shown in the

Sensitivity and Flight experiments presented in this

study. However, as presented in section 1, there are

some differing viewpoints as to the impact of targeted

observations in different DA systems. Other reasons

that results from this work differ from others, in ad-

dition to that already mentioned, could be case se-

lection, verification domains, targeting technique,

meteorological situation, season, year, and DA sys-

tem used (e.g., Kelly et al. 2007; Buizza et al. 2007;

Cardinali et al. 2007).

As expected, this study found that the Ideal_tquv

experiment performs the best and that the dropsonde

observations have the greatest (least) positive impact on

forecast error for the 30 January (25 February) storm.

Section 4d explored forecast error growth in both of

these storms and found that both hadmultiple structures

that contributed to this growth, with the strongest fea-

ture associated with a ridge upstream of the storm (i.e.,

Rex block for the 30 January storm and an embedded

short wave for the 25 February storm). These struc-

tures are also important for the Sensitivity and Flight

experiments, since the ridge upstream of the 30 January

storm and the associated propagation of the observation

signal (Szunyogh et al. 2000) are captured using the

FIG. 12. (top) TEE and (bottom) SLP bias error for each set of experiments for the (a),(d) 29 Jan, (b),(e) 30 Jan, and (c),(f) 25 Feb

storms. Notice that the range of the y axis for the (e) 30 Jan and (f) 25 Feb plots of SLP bias is different than that for (d) 29 Jan. Error

values are generated by calculating errors for all forecasts with a 2–3-day lead time relative to one verification region (148 3 148 lat–lon
boxes outlined in black in Fig. 2) and then averaging those errors for each storm over the domain of interest (either WEST_USA or

ALASKA). The percent difference between each experiment and the CTL is shown with the solid lines and the 95% confidence interval

(obtained using the paired t test) with the dashed lines, such that Ideal_(region)_tquv is in purple, Sensit_(region)_tquv in green, and

Flight_(region)_tquv in red (see Fig. 5 caption for more details). For all plots, the standard deviation goes to zero at the edges of the plot

because n5 1 at these points. Moving toward the center of the plot, the number of 2–3-day forecasts used in the calculation increases,

such that n is maximized and equals 5. Labeled tick marks highlight verification regions. For the 29 Jan storm: YU (Yukon) and AN

(Anchorage). For the 30 Jan storm: OR (Oregon) and CA (California). For the 25 Feb storm: WC (West Coast) and CA (California).
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ETS technique. However, the short wave and the

storm becoming a closed low is not captured for

the 25 February storm since all the forecasts are initiated

before these two important structures formed. Instead,

the ETS technique captures the deepening upper-level

low from which the 25 February storm subsequently

develops.

It is important to think about the potential for forecast

improvement for each storm, the selection of cases with

clear perturbation propagation and amplification, the

size of the sampling region, and the intensity and spatial

extent of the sensitive regions found by the ETS tech-

nique. In the Idealized experiments, the analysis error is

larger (of equal intensity but more spatially extensive)

for the 30 January storm (see Figs. 3a,b), compared to

the 25 February storm (see Figs. 4a,b). These analysis

errors produce poorer forecasts seen in the CTL. For the

Sensitivity experiments (see Fig. 10), the sensitivity

FIG. 13. Scatterplots of (top) TEE, (middle) SLPRMSE, and (bottom) 6-h accumulated precipitation bias for the CTL (x axis) and each

experiment (y axis) for the 29 Jan, 30 Jan, and 25 Feb storms. Values are generated by calculating the respective error for forecasts with

a 2–3-day lead time relative to one verification region and then averaging those errors for each storm over the same region (148 3 148 lat–
lon boxes outlined in black in Fig. 2). For each storm, there are symbols representing the forecast lead time (48–72 h) for each set of

experiments: Ideal (red), Sensit (green), and Flight (blue). The verification region for each storm is shown in the plot titles and in the

legend with AN (Anchorage), OR (Oregon), and CA (California).

1360 MONTHLY WEATHER REV IEW VOLUME 146



domain for the 30 January storm has the largest spatial

extent with large relative ETS values (the same is true

when examining absolute ETS values, not shown) when

compared to the other two storms. Therefore, the

30 January storm, which has large analysis errors and

sensitivity, has higher potential for improvement. The

29 January storm has the smallest spatial extent and

magnitude for relative ETS values, but the absolute ETS

values are between that of the other two storms with the

weakest error propagation signal (not shown). The

weaker signal could partially explain why the Sensitivity

experiment produces a 3% reduction in TEE for the

30 January storm, and the 29 January storm (see Fig. 12)

produces neutral results even though the absolute ETS

values are stronger than the 25 February storm. The

25 February storm appears mixed in terms of improve-

ment in forecast error (see Fig. 12). This could also be

partly due to the characteristics of the sensitivity domain

since the domain has a small spatial extent with low

relative ETS values, but higher absolute ETS values

with a clearer error propagation signal (not shown). The

Flight experiments generally show an even smaller re-

duction in forecast error, compared to the Sensitivity

experiments, due to their smaller domain.

7. Conclusions

Extratropical cyclones can greatly impact the United

States and cause significant loss of life and property due

to intense winds and heavy precipitation. Even though

NWP has improved, forecast busts still occur in cases of

strong North Pacific cyclones (McMurdie and Mass

2004; McMurdie and Casola 2009; Rodwell et al. 2013)

due to large analysis errors over data-sparse regions,

such as the Pacific Ocean (Langland et al. 1999b, 2002;

McMurdie and Casola 2009; Colle and Charles 2011). In

this study, a targeted observation approach is used

within the OSSE framework to improve forecast skill of

winter storms impacting the western United States. Three

U.S. winter storms are identified in the ECMWFT511NR

between January and February 2006. The ETS method is

used to find regions sensitive to forecast error growth

(Zhang et al. 2016). Three different experiments with dif-

ferent combinations of dropsonde observations were de-

signed and compared to a CTL without dropsonde

observations (see Table 1): 1) Idealized, 2) Sensitivity, and

3) Flight experiments providing dense sampling of (i) a

very large domain, (ii) areas sensitive to error growth, and

(iii) a flight track over the sensitive areas found in (ii).

The primary results from this study are the following:

1) Initializing the GFS with simulated perfect observa-

tions over a large idealized domain of the Pacific

Ocean improves forecasts over the CONUS for all

three winter storms studied, at times reducing energy

error by up to 15%. Even though these experiments

use perfect simulated observations (no errors added

prior to being assimilated) and underrepresent the

real world, the impact is large, indicating the poten-

tial value of supplemental observations even with

realistic simulated observations (perfect 1 errors

added prior to assimilation into GSI).

2) Sampling all three observation types (temperature,

wind, and specific humidity) provides the most

benefit. Individually, temperature and wind are

found to providemore benefit than specific humidity.

This could be due to using the dry energy-norm or to

specific humidity being less important for the scales

and processes in this study.

3) The ETS technique is effective at isolating regions

of high sensitivity that could reduce the 2–3-day fore-

cast error over specific verification regions, if sampled.

4) At the 2–3-day lead time, sampling the sensitivity or

flight path domain with simulated perfect observations

provides a reduction in TEE of up to 5% (a smaller

reduction in forecast error than sampling the idealized

domain, as expected). Even though this positive impact

would tend to be reducedwith nonperfect observations,

this study still suggests that targeted observations can

provide an improvement in forecasts.

5) Reduction in forecast error of an average of 10% for

the Idealized experiments is comparable to previous

studies that used lower-resolution 3D-Var nonhybrid

DA system. A reduction of up to 5% for the

Sensitivity and Flight experiments is less than that

found in previous studies but comparable to a more

recent study that found a 4% reduction using a

modern 4D-Var model with real observations.

6) For all experiments, the 30 January storm shows a

larger reduction in forecast error than the 25 February

storm, compared to the CTL. This is potentially due to

the undersampling of important atmospheric structures

critical for storm development and the spatial charac-

teristics of the analysis error available in the CTL.
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APPENDIX A

Simulated Observations

Both simulated satellite and conventional observa-

tions were used in this OSSE study. A list of simulated

observations assimilated into the GSI system is shown in

TablesA1 andA2. This list wasmotivated by the need to

be as close to NCEP operations as possible so that the

results could help to inform decision-makers and sup-

port the public good. As a result, the list of satellites and

conventional observations assimilated was set by the

NCEP operations usage files.

APPENDIX B

Comparison of Dry Total-Energy Norms

In this section, Fig. B1 is presented and compared to

Fig. 5. Forecast error in Fig. B1 is generated using the

dry total-energy norm from Hamill et al. (2013) instead

of the one presented in this manuscript. A comparison of

Fig. 5 and Fig. B1 highlights the equivalency of the two

TABLE A1. Satellite observations assimilated into the NCEP GFS

system for this OSSE study.

Satellite Microwave Infrared

Radio

occultation

Aqua AMSU-A AIRS

MetOp-A AMSU-A,

MHS

HIRS4, IASI GRAS

Suomi NPP ATMS CrIS

NOAA-15 AMSU-A

NOAA-18 AMSU-A,

MHS

NOAA-19 AMSU-A,

MHS

HIRS4

Meteosat-9 SEVIRI

GOES-13 SNDR D1–D4

DMSP F16 SSMIS

GRACE JPL Blackjack

COSMIC JPL Blackjack

TerraSAR-X JPL Blackjack

C/NOFS CORISS

TABLE A2. Conventional observations assimilated into the NCEPGFS system for this OSSE study. In this table, Ty and Ts are virtual and

sensible temperature, q is specific humidity, u and y are zonal and meridional wind, and Pstn is station pressure.

PREPBUFR

message type Description Report type Observations

ADPUPA Rawinsonde 120 (220) Ty , q, Pstn (u, y)

Flight-level reconnaissance and profile dropsonde 132 (232) Ty , q (u, y)

Pilot balloon (pibal) 221 u, y

AIRCAR Meteorological Data Collection and Reporting System (MDCRS)

Aircraft Communications, Addressing, and Reporting System

(ACARS) aircraft

133 (233) Ts, q (u, y)

AIRCFT Aircraft report (AIREP) and pilot report (PIREP) aircraft 130 (230) Ts (u, y)

Aircraft Meteorological Data Relay (AMDAR) aircraft 131 (231) Ts (u, y)

SFCSHP Surface marine reports 180 (280) Ty , q, Pstn (u, y)

Splash level drop over ocean 182 (282) Ty , q, Pstn (u, y)

ADPSFC Surface land (SYNOP, METAR) reports 181 Ty , q, Pstn

PROFLR NOAA Profiler Network 223 u, y

SATWND Satellite wind reports 242–243, 245–46, 250, u, y

252–54, 257–59

WDSATR WindSat scatterometer data 289 u, y

ASCATW Advanced Scatterometer (ASCAT) winds over ocean 290 u, y

VADWND NEXRAD VAD wind data 224 u, y
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formulations, indicating that the surface fields are minor

contributors to the dry total-energy norm for the

storms analyzed in this study. Overall, the pattern and

relative changes between each experiment for each

storm is about the same in these figures. More spe-

cifically, the reduction in forecast error for the ex-

periments relative to the CTL is strongest at shorter

forecast lead times, with the Idealized experiment

having the largest reduction. Additionally, verifica-

tion regions identified as having statistically signifi-

cant results for each experiment are the same between

both figures (see bottom rows). Exceptions to this are

found around 0000 UTC 30 January for the 30 January

storm and 0000 UTC 25 February for the 25 February

storm, when the statistical significance for some of the

experiments changes from significant to insignificant.

These verification times are beyond the verification re-

gions/dates of interest presented in this study in section 5.

For those verification regions, the differences between

using the dry total-energy norm presented here and that

from Hamill et al. (2013) may be significant, and if it was

not beyond the scope of this study, would have been in-

vestigated further.

APPENDIX C

Automated Flight Track Algorithm

All UAS flight tracks took into account the ETS sensi-

tivity maps. First off, we had to account for the GH flight

requirements: 1) only fly over the ocean due to Federal

Aviation Administration (FAA) regulations, 2) maximum

flight duration of ;24h, 3) up to 80 dropsondes per GH

flight, 4) travel as far west as the central North Pacific

(1808) per FAA GH constraints, and 5) distance from

departure location at the NASA’s Armstrong Flight Re-

search Center at Edwards Air Force base in California.

After accounting for the GH flight constraints, the track

software generates aGHflightpath that considers the2–3-day

average ETS sensitivity pattern. From the sensitivity, the

track software creates an initial waypoint of the largest ETS

sensitivity in the specified GH domain that is 7h from Ed-

wardsAir ForceBase.Although this time is arbitrary, it was

chosen to maximize flight time over the sensitive region for

releasing dropsonde data. Future waypoints are chosen

based on the gradient of the ETS sensitivity in the north,

south, west, and east directions from the initial waypoint.

FIG. B1. As in Fig. 5, but generated with the dry total-energy norm used in Hamill et al. (2013).
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From this perspective, the flight path traverses the region of

the greatest sensitivity in order tomaximize the sampling of

regions prone to large error growth. The flight path ends

when the maximum allowable time limit is reached. When

that happens, a final waypoint is computed at Edwards

Air Force Base. From the waypoints produced, dropsonde

locations are created at a density of 618 of latitude–

longitude in the primary sampling domain. The algo-

rithm does not take into account the atmospheric flow or

the nature run wind field. One of the future considerations

is to account for the atmospheric wind as well as important

meteorological features tied to the sensitive areas. The

algorithm, however, provides an objective method to

sample the region of highest ETS sensitivity.
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